Joint Modeling Tumor Burden and Time to Event Data in Oncology Trials

Ye Shen, Aparna Anderson, Ritwik Sinha, and Yang Li

ASCPT 2018 Annual Meeting

Orlando, FL

2018.3.23

Introduction

- In oncology, overall survival is the ideal measure of treatment benefit
- However, the mechanistic and biologic effects of a therapeutic agent are generally described in terms of tumor burden (TB), measured repeatedly at protocol-specified time intervals
- Tumor burden is usually categorized (e.g., per RECIST) for the purpose of analyzing objective response rate or progression-free survival (PFS)
- The loss of information due to categorization may result in a misrepresentation of the true association between treatment and change in TB
- Question: How can we fully exploit the complete longitudinal tumor burden data to characterize biological treatment effects?

Commonly applied methods have important limitations

- Patterns obscured if too many subjects
- Qualitative; no formal inference
- Bias due to lack of follow-up in those who progress or die (non-random missingness)

- A different measure of change (e.g., max % change vs. nadir) might reveal a different pattern
- Qualitative; no formal inference
- Ignores timing, durability, and survival

The nature of missing TB data affects estimation and interpretability

Missing completely at random (MCAR):

Missing value does not depend on observed or unobserved measurements of interest

Missing at random (MAR):

Missing value does not depend on unobserved value itself, but possibly on other factors

Missing not at random (MNAR):

Missing value depends on unobserved value itself

Example:

Subjects are more likely to miss tumor assessment visits during the holiday season Loss of power

Example:

Subjects have missing TB data following death or evidence of disease progression

Example:

Subjects with high TB are more likely to miss tumor assessment visits due to impaired mobility Bias

Loss of power

Loss of efficiency

A more robust method is required

• We want a model that

- uses the longitudinal TB data
- accounts for MAR and possible MNAR due respectively to PFS and a possible latent missing mechanism
- allows formal inference about the association between treatment and TB

We want to evaluate how such a model performs

- with respect to bias and variance
- under linear and nonlinear tumor burden distributions
- as compared to
 - a gold standard model fitted to fully observed data (i.e., no missingness)
 - a simpler model that requires missing data to be (at worst) MAR

Construct a model that jointly captures TB and PFS

■ Linear mixed effects (LME) model for longitudinal TB data $TB(t) = covariate(t)*\beta_1 + RE_1(t) + error$

Event time (ET) model for progression-free survival

 $hazard(t) = exp{covariate(t)*\beta_2 + RE_2}$

PFS is defined as the time from study entry to disease progression or death, whichever occurs first

Joint model (JM): Introduce correlation between random effects (RE₁, RE₂): RE₁(t) = U₁ + U₂*t and RE₂ = π_1 *U₁ + π_2 *U₂

where U_1 =random intercept, U_2 =random slope, and π_1, π_2 = fixed coefficients

<u>NOTE</u>: Non-zero π_1 and π_2 produces MNAR data

LME alone offers a simple alternative to the more complex JM, but LME gives biased results if MNAR conditions exist (Schafer and Graham, 2000).

Estimate joint model parameters

- A joint likelihood function can be constructed for the LME and ET components of the JM
 - $L_Y =$ likelihood of longitudinal TB process
 - L_{N|Y} = conditional likelihood of event process for progression-free survival, given TB data
 - $L = L_Y \times L_{N|Y}$ = joint likelihood function (Henderson et al., 2000)
- Apply algorithm and SAS program developed by Guo and Carlin (2004) to maximize joint likelihood

 (\mathbf{A})

Simulation 1: JM operating characteristics under linear TB

Apply (B) to simulate data:

 $TB(t) \sim b_{L0} + b_{L1}^{*}t + b_{L2}^{*}t^{*}Trt + U_{1} + U_{2}^{*}t + error$ $Log(PFS hazard) \sim b_{S0} + b_{S1}^{*}Trt + p_{1}^{*}U_{1} + p_{2}^{*}U_{2}$ (B)

where $U_1 \sim N(0, v_{11})$, $U_2 \sim N(0, v_{22})$, error $\sim N(0, 1)$, and b_{L0} , b_{L1} , b_{L2} , b_{S0} , b_{S1} are fixed at 0.4, 0.1, -0.2, -4, -1, respectively

TB values q6wks in t=[0,48], n=300, replications=200

Missing mechanism for data generated from (B):

- If event occurs on or before t=48, set TB data as missing after event time
- If event occurs after t=48, no missing TB and censor PFS at t=48

Simulation 1: Linear TB, missing data are MAR

Parameter estimates (SD) for b_{L0} , b_{L1} , and b_{L2} from TB model

	FLME	PLME	PJM	FLME	PLME	PJM		
True			= 0 (MAR)					
parameters	v ₁	$v_1 = 0.1, v_{22} = 0$).05	$v_{11} = 1, v_{22} = 0.05$				
$b_{L0} = 0.4$	0.40(0.029)	0.40(0.028)	0.39(0.033)	0.40(0.070)	0.40(0.071)	0.40(0.072)		
$b_{L1} = 0.1$	0.10(0.005)	0.10(0.006)	0.10(0.006)	0.10(0.005)	0.10(0.006)	0.10(0.007)		
$b_{1,2} = -0.2$	-0.20(0.005)	-0.20(0.006)	-0.20(0.007)	-0.20(0.005)	-0.20(0.006)	-0.20(0.007)		
	v ₁	$v_{11} = 0.1, v_{22} =$	0.5	$v_{11} = 1, v_{22} = 0.5$				
$b_{L0} = 0.4$	0.40(0.039)	0.40(0.038)	0.40(0.038)	0.40(0.061)	0.40(0.066)	0.41(0.068)		
$b_{L1} = 0.1$	0.09(0.055)	0.09(0.057)	0.09(0.057)	0.09(0.061)	0.08(0.059)	0.09(0.060)		
$b_{1,2} = -0.2$	-0.19(0.036)	-0.19(0.037)	-0.19(0.038)	-0.20(0.054)	-0.20(0.051)	-0.20(0.053)		

<u>Conclusion</u>: Under MAR, JM produces unbiased estimates and shows minimal loss of efficiency compared to correctly specified LME approach.

Simulation 1: Linear TB, missing data are MNAR

Parameter estimates (SD) for b_{L0} , b_{L1} , and b_{L2} from TB model								
	FLME	PLME	PJM	FLME	PLME	PJM		
True			$p_1 = -1.5, p_2 =$	= 2 (MNAR)				
parameters	v ₁₁	$= 0.1, v_{22} = 0$).05	$v_{11} = 1, v_{22} = 0.05$				
$b_{L0} = 0.4$	0.40(0.033)	0.39(0.037)	0.39(0.039)	0.39(0.070)	0.33(0.071)	0.40(0.072)		
$b_{L1} = 0.1$	0.10(0.006)	0.10(0.006)	0.10(0.007)	0.10(0.007)	0.10(0.008)	0.10(0.008)		
$b_{1,2} = -0.2$	-0.20(0.004)	-0.20(0.005)	-0.20(0.006)	-0.20(0.004)	-0.20(0.005)	-0.20(0.006)		
	$v_{11} = 0.1, v_{22} = 0.5$ $v_{11} = 1, v_{22} = 0.5$							
$b_{L0} = 0.4$	0.40(0.035)	0.39(0.038)	0.40(0.039)	0.40(0.062)	0.29(0.066)	0.40(0.069)		
$b_{L1} = 0.1$	0.10(0.054)	0.05(0.056)	0.09(0.061)	0.10(0.052)	0.06(0.059)	0.10(0.060)		
$b_{1.2} = -0.2$	-0.19(0.038)	-0.11(0.040)	-0.19(0.044)	-0.20(0.042)	-0.09(0.046)	-0.20(0.052)		
FLME = LME fitted on full data (ideal) PLME = LME fitted on partial data due to MNAR PLM = Joint Model fitted on partial data								

<u>Conclusion</u>: Under MNAR and large inter-subject variability, JM reduces estimation bias compared to misspecified LME model.

Simulation 2: JM operating characteristics under non-linear TB

- Consider non-linear TB distribution (Wang et al., 2009)
- Non-linear TB curves reflect an initial dip due to tumor shrinkage, followed by an increase (progression) as the treatment loses its effectiveness
- MNAR mechanism; TB values q8wks in t=[0,48]; n=300; 200 replications

TB data generated under 4 scenarios:

- Model 1: No treatment effect (null model)
- Model 2: TB shrinks more quickly in one arm, but progression occurs at the same rate in both arms
- Model 3: Both arms have the same shrinkage rate, but different rates of progression
- Model 4: One arm has slow steady decrease in TB (phenomenon seen with immunotherapies), while other has progression

Simulation 2:

Non-linear TB, missing data are MNAR

Parameter estimates (Dias) for D_{L0} , D_{L1} , and D_{L2} from TD model									
	FLME †	Bias(PLME)	Bias(PJM)	FLME †	Bias(PLME)	Bias(PJM)			
		Model 1			Model 2				
	(Null con	dition – no d	lifference)	(Differ	rent shrinkag	e rates)			
\hat{b}_{L0}	1.37	1.17	0.80	1.24	0.75	0.51			
\hat{b}_{L1}	-0.002	0.137	0.089	-0.002	0.060	0.059			
\hat{b}_{L2}	0	0.017	0.004	-0.010	0.048	0.019			
		Model 3		Model 4					
	(Differe	ent progressi	on rates)	(Stability vs. progression)					
\hat{b}_{L0}	1.45	1.24	0.84	1.00	0.90	0.65			
\hat{b}_{L1}	0.005	0.151	0.095	-0.006	0.160	0.084			
\hat{b}_{L2}	-0.001	0.021	0.004	0.014	0.112	0.022			

 $\setminus C = 1 = 1$

[†] FLME is a misspecified model in Simulation 2 and therefore not the ideal reference. Convergence issues with non-linear methods prevented calculation of gold standard estimates.

Conclusion: With estimates from FLME as points of reference, JM introduces less bias than LME by accounting for latent MNAR process.

Two-stage piecewise linear mixed effects model

- Longitudinal data generated following the non-linear TB component suggested by Wang et. al.(2009). Event defined as 20% increase in TB from baseline or nadir.
- To account for the non-linear trajectory in TB, the two stages were suggested by previous simulation results from the figure.

Stage 1: t = [0, 24]

 $TB(t) \sim b + b *t + b *t*T$

$$\begin{split} TB(t) &\sim b_{L01} + b_{L11} * t + b_{L21} * t * Trt + U_{11} + U_{21} * t + error \\ Log(PFS hazard) &\sim b_{S01} + b_{S11} * Trt + p_{11} * U_{11} + p_{21} * U_{21} \end{split}$$

Stage 2: t = (24, 48]

$$\begin{split} TB(t) &\sim b_{L02} + b_{L12}^{} * t + b_{L22}^{} * t * Trt + U_{12}^{} + U_{22}^{} * t + error \\ Log(PFS \text{ hazard}) &\sim b_{S02}^{} + b_{S12}^{} * Trt + p_{12}^{} * U_{12}^{} + p_{22}^{} * U_{22}^{} \end{split}$$

In practice, one may need to check the longitudinal process pattern before making a decision on whether a piecewise linear approximation is needed..

Simulation results from the Two-stage model under MNAR (Stage1)

Parameter estimates (Bias) for b_{L0} , b_{L1} , and b_{L2} from TB model									
	FLME †	Bias(PLME)	Bias(PJM)	FLME †	Bias(PLME)	Bias(PJM)			
		Model 1			Model 2				
	(Null con	dition – no c	lifference)	(Differ	ent shrinkag	e rates)			
\hat{b}_{L01}	2.136	0.017	0.011	2.111	0.023	0.017			
\hat{b}_{L11}	-0.016	4.7E-3	3.2E-3	-0.016	5.9E-3	4.0E-3			
\hat{b}_{L21}	-6.7E-4	8.2E-4	6.4E-4	-6.2E-3	1.3E-3	1.2E-3			
		Model 3		Model 4					
	(Differe	ent progressio	on rates)	(Stability vs. progression)					
\hat{b}_{L01}	2.132	0.019	0.013	2.169		4.3E-3			
b _{L11}	-0.017	4.8E-3	3.2E-3	-7.3E-3	3.3E-4	1.4E-4			
\hat{b}_{L21}	0.012	1.6E-3	1.2E-3	-0.021		2.0E-3			

[†] FLME is estimated through two-stage piecewise linear approximation.

Simulation results from the Two-stage model under MNAR (Stage2)

Parameter estimates (Bias) for b_{L0} , b_{L1} , and b_{L2} from TB model									
	FLME †	Bias(PLME)	Bias(PJM)	FLME †	Bias(PLME)	Bias(PJM)			
		Model 1			Model 2				
	(Null con	dition – no d	ifference)	(Differ	(Different shrinkage rates)				
\hat{b}_{L02}	1.502	0.034	0.011	1.433	0.037	0.012			
\hat{b}_{L12}	6.4E-3	4.1E-3	1.4E-3	6.4E-3	4.0E-3	1.3E-3			
\hat{b}_{L22}	-2.6E-4	9.1E-4	3.5E-4	2.0E-3	1.3E-3	5.4E-4			
		Model 3		Model 4					
	(Differe	ent progressio	on rates)	(Stability vs. progression)					
\hat{b}_{L02}	1.570	0.037	0.011	1.701	0.013	4.8E-3			
b _{L12}	5.7E-3	4.2E-3	1.4E-3	-5.5E-3	4.4E-4	8.8E-5			
\hat{b}_{L22}	2.7E-3	1.0E-3	4.3E-4	8.0E-3	2.6E-3	1.2E-3			

[†] FLME is estimated through two-stage piecewise linear approximation.

Conclusion: More reduction in Bias observed in Stage2 due to more drop-outs.

Comparisons between one-stage and two-stage joint models

Goodness-of-fit Comparisons between one-stage and two-stage joint models

	Model 1		Model 2		Model 3		Model 4	
	one-stage	two-stage	one-stage	two-stage	one-stage	two-stage	one-stage	two-stage
AMSE*	0.048	0.016	0.061	0.024	0.046	0.017	0.024	0.007

*AMSE is the averaged mean squared error between the observed and predicted main outcomes

Conclusions

- Under MAR and linear TB, JM produces unbiased estimates and shows minimal loss of efficiency compared to the correctly specified LME
- Under MNAR, linear TB, and large inter-subject variability, JM reduces estimation bias compared with the misspecified LME
- Under MNAR and non-linear TB distributions, JM appears to have more favorable operating characteristics compared to LME
- Further exploration is required to incorporate non-linear TB modeling and corresponding estimation algorithms

References

Guo, X. and Carlin, B.P. (2004). "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," *The American Statistician*, 58, 16-24

Henderson, R., Diggle, P. J., and Dobson, A. (2000). "Joint Modeling of Longitudinal Measurements and Event Time Data," *Biostatistics*, 1, 465-480 Schafer, J. L. and Graham, J. W. (2002). "Missing data: Our view of the state of the art," *Psychological Methods*, 7, 147-177

Wang, Y. et al. (2009). "Elucidation of relationship between tumor size and survival in non-small cell lung cancer patients can aid early decision making in clinical drug development," *Clin. Pharmacol. Ther*, 86, 167-174 Thank you!

Appendix: Wang et. al. (2009)'s non-linear TB model

- Wang et. al. (2009) validated this model in four Phase III studies and provided estimates of the parameters. This relatively flexible model offers a wide range of plausible trajectories for TB data.
- The following notation is used to explain the model. $TSO_i(t) = Observed tumor burden of subject i at time t$ $TS_i(t) = Tumor burden of subject i at time t$ $Base_i = Baseline tumor burden of subject i$ $SR_i = Tumor Shrinkage Rate of subject i$ $PR_i = Progression Rate of subject i$ $\epsilon = Random measurement error$
- Then the no-linear longitudinal TB model is defined by the equations: $TS_i(t) = Base_i \times \exp(-SR_i \times t) + PR_i \times t$ $TSO_i(t) = TS_i(t) \times \exp(\epsilon)$